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ABSTRACT

This paper expands on a method proposed in [1] for stabilizing oscillatory systems with
positive, delayed feedback. The closed-loop system obtained is shown (using the Nyquist
criterion) to be stable for a range of delays.

1 Introduction

The stabilization of ocillatory systems finds applications in robotics [2] and flexible structures
[1]. A simple example of an oscillatory system is given by the second-order system

ÿ + w2
0y = u (1)

This class of systems can be stabilized with negative derivative feedback, i.e.

u(t) = −kẏ(t) ; k > 0 (2)

The closed-loop system then becomes

ÿ + kẏ + w2
0y = 0 (3)

which is obviously stable for k > 0. This feedback will require the differentiation of the
output, or the use of an observer to estimate ẏ from the measurement of y. This paper
will present an exact anaylsis of a method given in [1] to stabilize this system using instead
positive delayed output feedback only, i.e.

u(t) = ky(t− τ) (4)

In [1], the analysis of the closed-loop system was done using a first-order Padé approximation
of the pure delay. In addition, no attempt was made to determine the range of allowable
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Figure 1: Block Diagram of Oscillatory System with Positive, Delay Feedback

delays in order to guarantee stability. A root locus approach was presented for such systems
in [3], [4] and more recently in [5]. Note that in general, a double-integrator system described
by

ÿ(t) = u(t) (5)

can be reduced to the oscillatory problem above by use of output-plus-delayed-output feed-
back of the form

u(t) = −w2
0y(t) + ky(t− τ) (6)

A double-integrator system will result, for example, from applying feedback-linearization to
many nonlinear systems [6]. By stabilizing these systems using output feedback only, savings
in sensors (tachometers) or observers are achieved. This paper will analyze the closed-loop
stability of this type of system

The remaining of the paper is organized as follows. Section 2 contains the analysis of the
delayed, positive-feedback control as applied to an oscillatory system. Section 3 presents
examples to illustrate the value of this approach, and Section 4 contains our conclusions.

2 Analysis

Consider the plant given by

G(s) =
1

s2 + w2
0

(7)

and the positive-feedback, time-delay compensator

C(s) = ke−sτ (8)

where k > 0 in a simple unity-feedback loop shown in Figure 1, such that the closed-loop
system is given by

T (s) =
G(s)C(s)

1−G(s)C(s)

=
ke−sτ

s2 + w2
0 − ke−sτ

(9)
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We will study the stability of the closed-loop system by exploring the Nyquist plot of

−G(s)C(s) =
−ke−sτ

s2 + w2
0

(10)

The Nyquist contour is assumed to be indented at the open-loop poles ±jw0 so that no poles
exist in the RHP. Thus for closed-loop stability there should be no clockwise encirclements
of the (−1, 0) point. First, note that with τ = 0, the closed-loop system is unstable because
the Nyquist plot will always encircle the (-1,0) point. Consider then the case where τ > 0,
and note that a necessary condition for stability is that

k < w2
0 (11)

If (11) does not hold there will always be at least one clockwise encirclement. Assuming
that this condition holds, let us consider the instability mechanisms by counting the number
of encirclements of -1 by the polar plot of

−G(jw)C(jw) =
−ke−jwτ

w2
0 − w2

(12)

Note that we have 3 important regions:

1. w < w0

2. w = w0

3. w > w0

At w = w0, the magnitude of the polar plot goes to infinity. This point will be studied later.
Let us consider what happens to both magnitude and phase as w goes from 0 to w0− ε, and
then from w0 + ε to ∞. The phase is given by

θ(w) = −π − wτ ; 0 ≤ w < w0

= −2π − wτ ; w > w0 (13)

and the magnitude by

| G(jw)C(jw) | =
k

w2
0 − w2

; 0 ≤ w < w0

=
k

w2 − w2
0

; w > w0 (14)

Let us then find all intersections of the polar plot with the negative real axis. The intersec-
tions will take place whenever the phase is −(2n + 1)π, n = 0, 1, · · ·. Therefore, they will
take place at the frequencies wc

−π − wcτ = −(2n + 1)π; 0 ≤ wc < w0

−2π − wcτ = −(2n + 1)π; wc > w0 (15)

or

wcτ = 2nπ; 0 ≤ wc < w0

wcτ = (2n + 1)π; wc > w0 (16)
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In order to make sure that no encirclements of the -1 point take place, we must guarantee
that the magnitude | G(jw)C(jw) | evaluated at wc is less than 1, i.e.

k

w2
0 − (4n2π2)/τ2

< 1; 0 ≤ 2nπ/τ < w0

k

(2n + 1)2π2/τ2 − w2
0

< 1; (2n + 1)π/τ > w0 (17)

Combining both conditions we get, given that k < w2
0,

2nπ√
w2

0 − k
< τ <

(2n + 1)π√
w2

0 + k
(18)

Now, let us consider what happens at w = w0. Since the magnitude is infinite at w = w0,
we should make sure that the phase can never be −(2n + 1)π at that frequency. In other
words, we need to make sure that

2nπ

w0
< τ <

(2n + 1)π
w0

(19)

Therefore, combining all conditions, we have the following 2 conditions

k < w2
0 (20)

2nπ

w0
<

2nπ√
w2

0 − k
< τ <

(2n + 1)π√
w2

0 + k
<

(2n + 1)π
w0

(21)

For all n = 0, 1, · · ·. Note that w2
0 can be modified if necessary by proportional feedback

−fy(t) in (4), i.e.

u(t) = −fy(t) + ky(t− τ) (22)

so that w2
0 becomes

W 2
n = w2

0 + f (23)

Also note that we can solve for the allowable region of k explicitely by finding the point of
intersection of the lower and upper bounds in (21) to obtain

0 < k ≤ 1 + 4n

1 + 4n + 8n2
w2

0

2nπ√
w2

0 − k
< τ <

(2n + 1)π√
w2

0 + k
(24)

See the plots in Figure 2, for w2
0 = 1. In particular, note that the region of stabilizing k

shrinks as the delay τ gets larger. The next section presents an example of the application
of this controller.
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Figure 2: Stability Regions (shaded) for w2
0 = 1

3 Examples

The first example will illustrate the stability and instability regions shown in Figure 2.

Example 1 Consider the open-loop system

G(s) =
1

s2 + 1

and let the controller be

u(t) =
3
13

y(t− 7.3)

The simulation is started at y(0) = ẏ(0) = 0.1, and is illustrated in Figure 3. Note that
this example illustrates the stable region for n = 1. On the other hand, let

u(t) =
6
13

y(t− 8)

and if the simulation is again started at y(0) = ẏ(0) = 0.1, the trajectories in Figure 4 are
obtained. These trajectories illustrate the unstable region for n = 1.

4 Conclusions

One normally thinks of positive feedback and pure delays as destabilizing effects in a feedback
system. However for purely oscillatory systems as illustrated by the second-order system in
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Figure 3: Stable Feedback
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Figure 4: Unstable Feedback
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this paper, this type of feedback is actually stabilizing ; and indeed since it involves only
output feedback, it can result in a simpler controller.
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